

PRECIPITATION HARDENING MARTENSITIC STAINLESS STEEL

SINOXX 4542 is a precipitation hardening (PH) martensitic stainless steel with Cu and Nb additions. In the solution-annealed (martensitic) condition, its yield strength is already above 110 ksi (750 MPa). Mechanical properties can be optimized with heat treatment. A yield strength of more than 170 ksi (1200 MPa) is obtained after aging treatment at 482 °C (900 °F). Higher aging temperatures coarsen the precipitates and reduce the strength.

The grade should not be used at temperatures above 300 °C or at very low temperatures. It has adequate resistance to atmospheric corrosion or in diluted acids or salts, where its corrosion resistance is equivalent to grade AISI 304 or 430.

APPLICATIONS

- offshore (foils, helicopter deck platforms ...)
- food industry
- pulp and paper industry
- aerospace (turbine blades ...)
- mechanical components
- nuclear waste casks

SPECIFICATIONS

ASTM A693 UNS S17400, type 630 AMS5604G 16.5Cr-4.0Ni-4.0Cu-0.30Cb EN 10088-2 1.4542 X5CrNiCuNb16-4

DIN 1.4542

CHEMICAL COMPOSITION

Typical values in the range [wt. %]

	С	Mn	Р	S	Si	Cr	Ni	Cu	Mo	Nb*
Min.	-	-	-	-	-	15.0	3.0	3.0	-	0.15
Max.	0.07	1.00	0.040	0.015	0.70	17.0	5.0	5.0	0.5	0.45

^{*} Nb = C×5

MECHANICAL PROPERTIES

SINOXX 4542 is provided in the solution-annealed condition. This is also called the solution heat treated condition or Condition A. Annealing is conducted by heat treating at approximately 1050 °C (1922 °F) and cooling to the room temperature. In this condition, the material possesses a martensitic structure. As a martensitic structure, SINOXX 4542 possesses a relatively high strength and hardness.

Minimum guaranteed values of the mechanical test requirements in solution-treated condition, following ASTM A693, AMS5604G are given in *Table 1*. The guaranteed values are valid for the plate thicknesses specified in *Table 1*.

Table 1

Solution treatment	Thickness	Tensile strength, max. [ksi] [MPa]		Yield strength, max. [ksi] [MPa]		Elongation, A ₅₀ , min. [%]	Hardness – Brinell, max.
1050 ± 25 °C (1922 ± 77 °F) (cooled as required)	8.0–101.6 (0.315–4.0)	-	-	-	-	-	363

The typical mechanical properties in the solution-annealed condition for the thickness range are given in *Table 2*.

Table 2

Solution treatment	Thickness	Tensile strength		Yield strength		Elongation, A ₅₀	Hardness – Brinell	Impact Charpy – V, 20 °C (68 °F)
	[mm (in.)]	[ksi]	[MPa]	[ksi]	[MPa]	[%]	[HB]	[J]
1050 ± 25 °C (1922 ± 77 °F) (air cooling)	8.0–101.6 (0.315–4.0)	152–160	1050–1100	119–133	820–920	5–8	300–350	150–180

The desired mechanical properties may be achieved by subsequent age hardening treatments. Minimum guaranteed values of mechanical test requirements after precipitation hardening treatment for condition H900, H925, H1025, H1075, H1100, H1150, following ASTM A693 and AMS5604G are presented in *Table 3*. The guaranteed values are valid for the plate thicknesses specified in *Table 3*.

Table 3

Precipitation hardening condition,	Hardening or Precipitation Treatment	Thickness	Tensile strength		Yield strength		Elon- gation, A ₅₀	Reduc- tion of area,	Hardness – Brinell		Impact Charpy – V, 20 °C (68 °F)
[H]	Temperature, [°C (°F)]	[mm (in.)]	[ksi]	[MPa]	[ksi]	[MPa]	min. [%]	min. [%]	min. [HB]	max. [HB]	min.* [J]
482 °C (900	482 °C (900 °F) –	10.0–15.88 (0.393701–0.625)	190	1310	170	1172	8	30	388	444	-
H900	1 h – air cooling	15.90–101.6 (0.626–2.0)	190	1310	170	1172	10	35	388	444	-
11035	H925 496 °C (925 °F) – 4 h – air cooling	10.0–15.88 (0.393701–0.625)	170	1172	155	1070	8	30	375	415	-
H975		15.90–101.6 (0.626–2.0)	170	1172	155	1070	10	35	375	415	-
	552 °C (1025 °F) – 4 h – air cooling	10.0–15.88 (0.393701–0.625)	155	1069	145	1000	8	35	331	388	14
H1025		15.90–101.6 (0.626–2.0)	155	1069	145	1000	12	40	331	388	20
579 °C (1075	579 °C (1075 °F) –	10.0–15.88 (0.393701–0.625)	145	1000	125	862	9	35	311	363	20
H1075	4 h – air cooling	15.90–101.6 (0.626–2.0)	145	1000	125	862	13	45	311	363	27
114400	593 °C (1100 °F) – 4 h – air cooling	10.0–15.88 (0.393701–0.625)	140	965	115	793	10	35	302	352	20
H1100		15.90–101.6 (0.626–2.0)	140	965	115	793	14	45	302	352	27
114450	621 °C (1150 °F) – 4 h – air cooling	10.0–15.88 (0.393701–0.625)	135	931	105	724	10	40	269	341	34
H1150		15.90–101.6 (0.626–2.0)	135	931	105	724	16	50	269	341	41

 $^{^{}st}$ According to the ASTM A693 the impact test is not required unless specified on the purchase order.

MICROSTRUCTURE

The microstructure of SINOXX 4542 PH steel in solution annealed condition (Condition A) is martensitic. Grain size according to ASTM E112 varies between 6 and 9, depending on plate thickness. The typical martensitic microstructure with grain size no. 6 for 70 mm thick plate is shown in *Figure 1*.

HOT FORMING

Hot forming should be carried out in a temperature range of 950–1200 °C (1742–2192 °F). After hot working, full heat treatment is required. This involves annealing and cooling to room temperature or lower. Then the components need to be precipitation hardened to achieve the required mechanical properties.

Figure 1: Martensitic microstructure

HEAT TREATMENT

Depending on the order:

- Solution annealing: 1050 ± 25 °C (1922 ± 77 °F), air cooling below 25 °C (77 °F)
- Age hardening:

```
H925 - 496 \pm 6 °C (925 \pm 10 \text{ °F}) - 4 \text{ hours} - \text{air cooling}
H1025 - 552 \pm 6 °C (1025 \pm 10 °F) - 4 hours – air cooling
H1075 - 579 \pm 6 °C (1075 \pm 10 °F) -4 hours - air cooling
H1100 - 593 \pm 6 °C (1100 \pm 10 °F) -4 hours - air cooling
H1150 - 621 \pm 6 °C (1150 ± 10 °F) - 4 hours - air cooling
```

• Laboratory heat treatment:* (only for material response conformation) $H900 - 482 \pm 6$ °C (900 ± 10 °F) – 1 hour – air cooling

CUTTING

Thermal cutting operations, such as plasma cutting, should be avoided. Mechanical cutting operations, such as bandsaw, abrasive waterjet, shearing and machining, are preferred.

DELIVERY CONDITIONS

- Solution annealed Condition A
- Age hardened conditions: H925, H1025, H1075, H1100, H1150

All blast cleaned quarto plates.

DIMENSIONS

SINOXX 4542	Thickness [mm]	Max. width [mm]	Max. length [mm]	Max. weight [kg]
Quarto plates	8–12.7 (0.31–0.5 in.)	2000 (78.74 in.)	12000 (472.44 in.)	9600 (21164 lbs)
Quarto plates	12.7–101.6 (0.5–4.0 in.)	2500 (98.42 in.)	12000 (472.44 in.)	9600 (21164 lbs)

The information and data in this product data sheet are intended for informative purpose only and may be revised at any time without notice. Presented typical properties of the materials are described only to help readers make their own evaluations and decisions. They are not guaranteed.

^{*}according to the AMS 5604G